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Abstract: The coupling of unparticles to the Standard Model (SM) Higgs boson leads

to a breaking of conformal symmetry which produces an effective mass term in the unpar-

ticle propagator. Simultaneously, the unparticle couplings to other SM fields produces an

effective unparticle decay width via one-loop self-energy graphs. The resulting unparticle

propagator then leads to a rather unique appearance for the shape of unparticle resonances

that are not of the usual Breit-Wigner variety when they form in high energy collisions.

In this paper we explore whether or not such resonances, appearing in the Drell-Yan chan-

nel at the LHC, can be differentiated from more conventional Z ′-like structures which are

representative of the typical Breit-Wigner lineshape. We will demonstrate that even with

the high integrated luminosities available at the LHC it may be difficult to differentiate

these two types of resonance structures for a substantial range of the unparticle model

parameters.
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1. Introduction and background

Recently, Georgi [1] has speculated upon the existence of a new high scale conformal sector

which may couple to the various gauge and matter fields of the Standard Model(SM).

This coupling is described via a set of effective operators which are suppressed by a large

mass scale Λ̃. Such a new sector may lead to important phenomenological consequences

in our low energy world through the interactions of this new ‘stuff’, termed unparticles,

whose properties have begun to be explored in a number of phenomenological analyses.

There is good reason to believe that the physics associated with these unparticles can

be best explored at TeV scale colliders such as the LHC. Signals for unparticles at the

LHC may result either from unparticle emission in otherwise SM processes and/or their

exchange between SM fields which can lead to new and potentially unusual contact-like

interactions [2, 3] that can also produce new resonance-like structures. In order to uniquely

identify possible signatures of either of these processes at colliders we need to know more

details about the properties of the unparticles themselves.

A critical issue of importance to the collider phenomenology of unparticles is to know

whether or not the scale invariance/conformal symmetry present in the unparticle sector

is significantly broken by the SM Higgs vev, v, near the TeV scale once the unparticle

is coupled to SM fields [4]. This seems to occur quite naturally in the case of either

spin-0 or spin-1 unparticles. This symmetry breaking manifests itself in two important

ways: (i) the propagator of the unparticle ‘field’ now has with it an associated mass

scale, µ, which is geometrically related to both v and the scale Λ̃, which can now be

thought of as the mass gap for the unparticle. Furthermore, (ii) via its couplings to

the SM fields, the unparticle becomes unstable through 1-loop self-energy diagrams [4]

with the unparticle propagator developing a complex structure not associated with the

familiar overall phase factor. There is some apparent uncertainty in the literature as to

how to treat the unparticle propagator when the time-like momentum transfer is below

the scale µ, i.e., when p2 < µ2 which we only mention here since it has a strong effect

on the resulting unparticle resonance phenomenology. One possible interpretation is that

the entire unparticle propagator actually vanishes in this region [4]. In this case, e.g.,

the exchange of unparticles in s-channel processes will lead to rather unusual wall-like
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resonance structures, termed an unresonance, as described in detail in our earlier work [7].

As previously shown, the appearance of a structure of this type with a significant event rate

would be a rather unique signature for unparticle production at the LHC. However, the

unparticle resonance signature would be somewhat more conventional if the the propagator

is non-zero in the p2 < µ2 region which is also considered as a possibility in the literature.

Assuming this last interpretation is valid and allowing for a finite unparticle decay ‘width’,

in this case the unresonance appears much more similar to a conventional spin-1, Z ′-like

object [5] in its qualitative appearance. However, as we will discuss below, the resulting

resonance lineshape structure is still not of the familiar Breit-Wigner form [6]. This is the

case that we will consider here in detail as it seems to be much more likely based on realistic

constructions [8]. The reader should note that while the possibility that the propagator

may vanish in the region p2 < µ2 is included in the discussion here for completeness this

hypothesis is not made in the following analysis.

The question we wish to address here is whether or not this type of unresonance

structure will provide a unique unparticle signature and can still be distinguished from

the more typical Z ′-like Breit-Wigner resonance shape in the clean Drell-Yan channel at

the LHC1. This is important since, as is well-known, heavy resonances appearing in this

channel may be the first new physics to be observed at the LHC. As we will see below

this uniqueness may be difficult to establish in some unparticle parameter space regions

at the LHC, even if one assumes a high integrated luminosity and an optimistic value for

the (un)resonance mass. The establishment of a unique form for the resulting resonance

structure may require a high energy linear collider to elucidate.

2. Analysis

To be definitive in the analysis that follows we will assume the case of spin-1 unparticles

which couple to the SM fermions in a flavor- and generation-blind manner for simplicity.

Of course an identical analysis can be employed in the spin-0 case with analogous results

to what we will obtain below. As discussed in the literature [9], there are a great many

ways for unparticles to interact with SM fields depending upon their spin. The particular

choice of a subset of interactions to examine will depend on a number of assumptions. For

example, the interaction of a spin-1 unparticle with a pair of SM fermions may be written

as
1

Λd−1
f̄ γµ(cfLPL + cfRPR)f̃Oµ , (2.1)

where here Λ is the effective mass scale, d is the non-canonical scaling dimension of the

unparticle field, which we will assume to lie in the range 1 ≤ d < 2 to make contact with

other existing phenomenological studies, and cL,R are assumed to be O(1) coefficients;

PL,R = (1 ∓ γ5)/2 are the helicity projection operators as usual. (We note that if we were

to choose even larger values of d than in the range considered here the analysis below would

become far simpler as we will see.) Recall that a free ordinary gauge field corresponds to

1It will certainly be more difficult to differentiate these two possibilities in any other more complex

channel.
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the limit d = 1 leading to a dimensionless coupling. Making the assumption above allows

us to effectively set cfL = cfR = c in the discussions that follow where c now takes on the

same value for all SM fermions. We will assume that this (and possibly other) unparticle

coupling(s) to the SM fields induces the ‘width’ in the unparticle propagator through the

imaginary part of the sum of 1-loop self-energy graphs. As discussed by both Barger et

al. and Rajaraman [4], and following the work of these authors in the analysis below, the

unparticle propagator may now be suggestively written as

U =
XdPd

|ŝ − µ2|2−d + iXdPdG̃
, (2.2)

where for the Drell-Yan process at LHC, ŝ is the time-like, partonic, square of the center

of mass energy, Pd = [1, e−iπ(d−2)] when ŝ[<,>]µ2, is the familiar unparticle phase factor,

Xd =
1

2 sin dπ

16π5/2Γ(d + 1/2)

(2π)2dΓ(2d)Γ(d − 1)
, (2.3)

as usual and G̃ arises from loop diagrams. The reader should note that this is just eq.5

of Rajaraman. However, unlike that author, we will make no approximations in the eval-

uations below and calculate G̃ explicitly, reproducing the results obtained by Barger et al.

Note that for ease of notation we have removed an overall factor of −gµν plus an irrelevant

term proportional to kµkν/k
2 (whose contribution vanishes in the case we consider here

since the external fermions are massless) from the definition of the propagator above. For

later purposes we show in figure 1 the value of |Xd| (Xd is a negative quantity) as a function

of d; it is important to note that this quantity is always less than unity, and sometimes

far less than unity, unless d is very close to its upper limit of 2. This generally leads to an

overall parametric suppression of the unparticle propagator which can be quite substantial.

Assuming the fermionic couplings discussed above generate this imaginary self-energy

we may write G̃, which runs with energy, directly as in ref. [4]:

G̃ =
c2

Λ2(d−1)
ŝ
Γ

µ
, (2.4)

with the object Γ now appearing as an effective scaled total ‘width’ for an unparticle of

‘mass’ µ defined in analogy with a typical heavy vector boson:

Γ =
µ

12π

∑

f

Nc(f)PSfFf , (2.5)

with the sum extending over the SM fermions, Nc(PS) being an appropriate color(phase

space) factor and Ff ∼ 1 allows for QCD and electroweak corrections. Observe that

appropriate factors of ŝ have been removed from the definition of γ so that a constant

width can be used here. The numerical effects of employing a running width in the analysis

below have been analyzed and found to quite insignificant. Note that Γ is now effectively

just the usual width of a spin-1 gauge boson with unit couplings. The apparent location

of the peak of the propagator at µ would then be experimentally identified with the mass

of the resulting resonance. Also note for later consideration that in unparticle exchange
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Figure 1: The quantity |Xd| as a function of d as defined in the text.

amplitudes between SM fermions U always will appear together with a factor of c2/Λ2(d−1)

from the couplings to the external fields. It is interesting to consider writing the inverse of

this propagator as

U−1 = Ru + iIu , (2.6)

where we observe that the real part is given by Ru = cos φ|ŝ−µ2|2−d/Xd while the imaginary

part has two contributions: Iu = G̃ − sin φ|ŝ − µ2|2−d/Xd with φ = 0 when ŝ < µ2 and

φ = π(2 − d) when ŝ > µ2. Note that corresponding expression for the absolute square of

the inverse propagator is then given by

|U |−2 = R2
u + I2

u =
( |ŝ − µ2|2−d

Xd

)2
+ (G̃)2 − 2G̃

Xd
|ŝ − µ2|2−d sin φ , (2.7)

which has an interesting and unusual ‘cross term’ which is linear in G̃ with a softer ŝ

behavior at large energies.

To get a feel for the resonance shape which results from this propagator and what we

might expect in a perfect collider environment, consider the amplitude for the s-channel

exchange of an unparticle between pairs of SM fermions (ignoring for simplicity all other

possible contributions) which takes the generic form

A ∼ c2

Λ2(d−1)
U , (2.8)

in the notation above. Defining the dimensionless combinations y2 = ŝ/µ2 and

α =
(Λ2

µ2

)d−1
(−c2Xd)

−1 , (2.9)
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one sees that the dimensionless scaled cross section is found to be proportional to

σ0(d) = y−2
(

Σ2 +
(Γ

µ

)2
+ 2Σ

Γ

µ
sin φ

)−1
, (2.10)

where Σ = α|y2 − 1|2−d/y2 and φ = 0[(2 − d)π] when y < [>]1. To see the resonance

shape produced by the unparticle with a finite width and how it compares to the more

typical results obtained for a gauge boson, i.e., the case d = 1, we show in figure 2 the

quantity σ0(d) as a function of y for different values of d as well as the corresponding ratio

R = σ0(d)/σ0(1). Note first that in all cases the value of the cross section at the top of the

resonance peak is the same, i.e., independent of the value of d. Furthermore, we observe

that as the value of d increases the shape of the resonance gets more and more distorted

away from that of the typical Breit-Wigner (d = 1) distribution. Not only does the width

of this distribution become narrower but it becomes more spike-like. We also notice that,

particularly for values of y >∼ 1.5, an ever larger shoulder develops above the peak region

indicating a significant cross section increase at large ŝ. This is essentially due to the cross

term in the propagator which is linear in G̃ that was pointed out above since it falls off

more slowly than is usual as y, i.e.,
√

ŝ, increases. Further information about the relative

resonance shapes can be gleaned from the cross section ratio R also shown in the bottom

half of this figure. Here the large y enhancement is clearly visible as is the sharpness of

the resonance shape relative to that of a conventional Breit-Wigner one near y = 1. We

note that below and in the resonance region itself the value of R is always less than unity

except on the top of the peak. It is clear from this study that in the limit of infinite

resolution and statistics all the curves with d > 1 would be easily differentiated from the

d = 1 Breit-Wigner shape; of course this is not the situation that we have in reality at the

LHC.

The question we now want to address is whether or not the parameters for one of these

unusual unparticle resonance lineshapes can be so chosen as to fake a Breit-Wigner at the

LHC given both the finite integrated luminosity and the final dilepton mass resolution.

To be concrete we will examine the case of a relatively light resonance in the Drell-Yan

channel with a high integrated luminosity of 300 fb−1 and will assume a dilepton mass

resolution for the e+e− final state of 1% which is similar to that of the ATLAS detector

in this channel2. In performing our calculations we will employ the CTEQ6.6M PDFs [10]

and include a constant NLO K-factor of 1.3 [11]; SM γ, Z exchanges and all interference

terms will be included in the analysis presented below. Conventional Z ′ resonances in

this mass region have been well studied for quite some time by both ATLAS [12] and

CMS [13] and should be well understood with large data samples. As a standard candle

for a conventional Breit-Wigner lineshape we take the Z ′ of the Sequential SM type, i.e.,

a Z ′ with same SM fermion couplings as the usual Z boson only heavier [5]. We note that

the current bound on the mass of such an object decaying only to SM particles from CDF

data at the Tevatron is now slightly in excess of 1 TeV [14]; to safely avoid such bounds we

will assume that µ = 1.2 TeV in the analysis that follows so that the resonance peak will

2Modifying this value by ∼ 20 − 30% will not change the results presented below.

– 5 –



J
H
E
P
1
1
(
2
0
0
8
)
0
3
9

Figure 2: The quantity σ0, as defined in the text, is shown in the upper panel as a function of y

for d = 1(1.1, 1.3, 1.5, 1.7, 1.9) corresponding to the solid(red, green, blue, magenta, cyan) curves,

from top to bottom near the resonance peak. Also shown are the corresponding values for the ratio

R in the lower panel as described in the text. Here α = 1 and Γ/µ = 0.03 have been taken for

demonstration purposes.

occur at this same value of
√

ŝ. The choice of a relatively light resonance structure will

allow us to make maximum use of the large integrated luminosity at the LHC to generate

a large data sample. If the (un)resonance is significantly heavier then the statistics will be
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Figure 3: SSM dilepton production rate at the LHC as a function of the dilepton invariant mass

assuming a Z ′ mass of 1.2TeV and a large integrated luminosity shown as the solid histograms.

The red(green, blue, magenta, cyan) histograms show the same results but for the cases where the

SM couplings are rescaled by factors of 0.7(0.5,0.3,0.2,0.1), respectively. The yellow histogram is

the result obtained when no Z ′ resonance is present. A 1% mass resolution smearing has been

applied in all cases.

reduced in the peak region and differentiation of resonance shapes will only be made more

difficult.3

Since, based on the analysis above, we expect the unresonance lineshape to be narrower

than that expected for the SSM with the same value of Γ, we begin our LHC analysis

by reminding ourselves how the conventional SSM Z ′ lineshape is altered as the overall

coupling strength of the fermions as well and total decay width are independently varied.

This is important since we want to know if we can mimic the unresonance lineshape by

varying the standard Breit-Wigner parameters. Figure 3 shows how the Z ′ resonance

responds as the overall coupling strength is systematically rescaled, i.e., lowered from the

usual SM value. Figure 4 shows similar results but now with the total resonance widths

independently rescaled upwards by factors of 1.5 and 3 (to compensate for the reduced

couplings) as would happen if, e.g., additional decay modes of the Z ′ were available besides

those to the conventional SM particles.4 Note that the resonances in all these cases are

clearly visible above the SM backgrounds given their relatively low mass and the assumed

3We could, of course, consider even less massive resonances with sufficiently weaker couplings so as to

avoid the Tevatron constraints. This, however, would not help us with the problem of lowered statistics at

the LHC.
4Recall that a 1% mass resolution smearing has been applied in obtaining all of these results and the

ones that follow.
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high integrated luminosity so that this is not an issue for this study. Here we see three

obvious and well-known effects: (i) As the couplings shrink the height of the peak of the

resonance get reduced as does the apparent width until it is consistent with the detector

mass resolution (which here is correlated with the varying width of the invariant mass

bins). (ii) For fixed couplings, increasing the value of Γ reduces the peak height and

widens the resonance unless the original width is far smaller than the mass resolution.

(iii) The contributions in the high energy tails of the resonances above the peak, while

reduced as the the couplings are decreased, are not significantly influenced by varying the

total width independently of the couplings within the somewhat narrow range considered

here. These three behaviors have, of course, been well studied for decades and are very

well understood. We note them here only to make direct contrasts with what occurs in the

unparticle case.

What happens in the unresonance case? To be definitive in what follows we will

assume that Λ = 2.5 TeV although this particular value will not play any essential role

in obtaining the results below since it merely sets an overall coupling scale as does the

parameter c2; only a combination of these two parameters is physically relevant. The first

things we observe from the results shown in figure 5, which assumes that c2 = 1, is that the

significance of the unresonance decreases very rapidly with increasing values of d (when all

other parameters are held fixed). We also observe that for d > 1.5 the unresonance become

essentially invisible given these particular choices of the input parameters and integrated

luminosity. Neither of these results are unexpected based on the analysis presented in our

previous study [7]. While for both d = 1.1 and 1.3 the unresonance seem to have a slightly

enhanced tail in the mass range above the resonance peak in comparison to the Z ′ cases

shown above, this effect appears to be rather modest for these particular parameter values.

Compare, e.g., the red histogram in figure 5 with the corresponding histograms in the

previous two figures. These resulting lineshape structures would certainly be somewhat

difficult to differentiate at the LHC. Of course this increased event rate in the high energy

tail would be relatively more significant for larger values of d except that for the set of

parameters used to obtain the results in figure 5 these corresponding states are effectively

invisible due to very small effective couplings and production cross sections. From this

exercise we learn that if we hope to distinguish the unresonance lineshape from that of a

more typical Z ′-like Breit-Wigner, we must have large values of c2 (for this value of Λ) in

order to probe the d >∼ 1.4 parameter space. The c2 values required to make this distinction

will clearly be d-dependent and will generally need to be rather large for the chosen value

of Λ to make a significant enhancement in the peak cross section as we will now see.

Figures 6 and 7 show the response of the unresonance predictions to rescaling the

value of c2 in order to mimic the Z ′ lineshapes, shown in figures 3 and 4, as closely as

possible. Here we see more easily the relative distortion of the the unresonance lineshape

in comparison to the more typical one produced by a Z ′. In addition to the unparticle

signal arising from the excess in the resonance high energy tail discussed above, a new

unresonance feature is now observable especially in the cases with large d and particularly

those with very large values of c2: the destructive interference which usually accompanies

a Z ′-like resonance below the peak (near ∼ 1TeV in the figures) is found to be relatively
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Figure 4: Same as the previous figure but now with the width for the resonances with reduced

couplings rescaled upwards by a factor of 1.5(top) or 3(bottom).

suppressed in the unparticle case. The source of this reduction can be traced back to

the behavior seen in figure 2. Since the unparticle produces a more spike-like resonance

structure, all things being equal, its contribution to the total Drell-Yan amplitude does

not turn on fully until the resonance peak region is more closely approached than in the

Z ′ case. This results in a reduction of the size of the interference with the SM amplitude

– 9 –
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Figure 5: Same as figure 3 but now showing the results for the unresonance case. The solid

histogram is the SSM Z ′ result for comparison purposes while the red(green,blue,magenta,cyan)

histograms correspond to the case d = 1.1(1.3, 1.5, 1.7, 1.9), respectively assuming that c2 = 1 with

Λ = 2.5TeV for purposes of demonstration.

below the peak and a loss of the destructive interference seen in the cross section. Note

that as the value of d approaches the upper limit of 2, e.g., for d = 1.9 with large values of

c2 that are needed to observe the unresonance structure, the lineshape is very significantly

distorted away from that of a conventional Breit-Wigner. The resonance height itself in

these cases is rather modest but the entire cross section both below and above the peak

region is seen to be enhanced. This does not look anything like a conventional Z ′ resonance

structure.

From these figures we can see that if the observability of the unparticle resonance

is sufficiently statistically significant (on the scale of the SSM Z ′) and the corresponding

couplings to the SM fermions are reasonably large then the non-Breit-Wigner aspects of the

lineshape will be apparent at the LHC in the Drell-Yan channel. However, it is clear that

if we significantly increase the value of µ, making the resonance structure appear at large

dilepton masses, this will make this analysis far more difficult due to the loss in resonance

region statistics. Thus a very massive unresonance structure observed in this channel may

not be readily distinguishable from that of a conventional Breit-Wigner.

3. Discussion and conclusions

In this paper we have addressed the issue of whether or not the non-Breit-Wigner shape

of an unparticle resonance structure appearing in the Drell-Yan channel can be uniquely

identified as such at the LHC when detector smearing effects are include. A SSM Z ′ with
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Figure 6: Same as the previous figure but now with the c2 = 1.5(4, 15, 60, 100) for the case

d = 1.1(1.3, 1.5, 1.7, 1.9), respectively, in the upper panel and with c2 = 2.5(6, 20, 75, 120) in the

lower panel.

scaled couplings was used as a standard-candle Breit-Wigner shape for comparison pur-

poses in this analysis. Rather optimistic resonance mass (1.2 TeV) and collider luminosity

(300 fb−1) choices were also made to enhance the LHC’s capabilities as much as possible

for this study. Failure to differentiate the two resonance shapes under these conditions

then demonstrates that this issue will be a serious one at the LHC. While it is clear that
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Figure 7: Same as the previous figure but now with the c2 = 3(8, 30, 90, 120) for the case d =

1.1(1.3, 1.5, 1.7, 1.9), respectively, in the upper panel and with c2 = 3(10, 40, 120, 130) in the lower

panel.

these two resonance shapes do appear somewhat different much of the time for the specific

input choices we have made it seems likely that any differentiation will prove to be diffi-

cult in many parameter space regions. For the assumed value of µ, when the anomalous

dimension d is near unity, the event rate is reasonably high producing large statistics but

the deviations from the Breit-Wigner shape are then observed to be small. However, as
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d grows and the deviations from the Breit-Wigner shape increase, the event rate in the

resonance region decreases due to the falling unparticle cross section for a fixed value of

c2. This implies that the parameter range over which the unparticle lineshape may be

uniquely identified will be significantly reduced and larger c2 will generally required to

perform the separation. We can conclude, however, that it is also clear from the analysis

above that if the unresonance cross section is within one to two orders of magnitude or so

of that for the SSM Z ′ with a mass of 1.2 TeV then the LHC should be able to identify it

as a non-Breit-Wigner structure. However, for larger unparticle masses or small effective

couplings this separation in resonance lineshapes will be made somewhat more difficult if

not impossible.

The lesson to be learned from this analysis is that if a new resonance is found at the

LHC care must be taken before assuming that its lineshape follows the conventional Breit-

Wigner form. A detailed study of the resonance shape may reveal something surprising

but may require either extremely high integrated luminosities or some kind of high energy

lepton collider.
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M. Cvetič and S. Godfrey, Discovery and identification of extra gauge bosons,

hep-ph/9504216;

T.G. Rizzo, Extended gauge sectors at future colliders: report of the new gauge boson

subgroup, hep-ph/9612440.

[6] Another example of non-Breit-Wigner resonance structures can be found in B. Fuks, J.J.

van der Bij and Q. Xu, High-dimensional Z’ phenomenology at hadron colliders, Phys. Rev.

D 78 (2008) 074016 [arXiv:0808.1680].

[7] T.G. Rizzo, Contact interactions and resonance-like physics at present and future colliders

from unparticles, JHEP 10 (2007) 044 [arXiv:0706.3025].

[8] G. Cacciapaglia, G. Marandella and J. Terning, Colored unparticles, JHEP 01 (2008) 070

[arXiv:0708.0005].

[9] S.-L. Chen and X.-G. He, Interactions of unparticles with standard model particles, Phys.

Rev. D 76 (2007) 091702 [arXiv:0705.3946].

[10] P.M. Nadolsky et al., Implications of CTEQ global analysis for collider observables, Phys.

Rev. D 78 (2008) 013004 [arXiv:0802.0007].

[11] See, for example, F. Petriello and S. Quackenbush, Measuring Z’ couplings at the LHC, Phys.

Rev. D 77 (2008) 115004 [arXiv:0801.4389].

[12] ATLAS collaboration, ATLAS detector and physics performance technical design report,

http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/TDR/access.html.

[13] CMS collaboration, CMS physics technical design report,

https://cmsdoc.cern.ch/cms/cpt/tdr/;

CMS collaboration, G.L. Bayatian et al., CMS technical design report, volume II: physics

performance, J. Phys. G 34 (2007) 995.

[14] See the talk by O. Stelzer-Chilton, High-mass resonances decaying to leptons and photons at

the Tevatron, at ICHEP08, July 29–August 6, Philadeplhia, U.S.A. (2008).

– 14 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRPLC%2C317%2C143
http://arxiv.org/abs/hep-ph/9805494
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRPLC%2C183%2C193
http://arxiv.org/abs/hep-ph/9504216
http://arxiv.org/abs/hep-ph/9612440
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD78%2C074016
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD78%2C074016
http://arxiv.org/abs/0808.1680
http://jhep.sissa.it/stdsearch?paper=10%282007%29044
http://arxiv.org/abs/0706.3025
http://jhep.sissa.it/stdsearch?paper=01%282008%29070
http://arxiv.org/abs/0708.0005
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD76%2C091702
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD76%2C091702
http://arxiv.org/abs/0705.3946
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD78%2C013004
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD78%2C013004
http://arxiv.org/abs/0802.0007
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD77%2C115004
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD77%2C115004
http://arxiv.org/abs/0801.4389
http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/TDR/access.html
https://cmsdoc.cern.ch/cms/cpt/tdr/
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JPHGB%2CG34%2C995

